
General Exam Formulae

Ohms Law: Voltage

 $E = I \times R$ where

E =voltage, I =current in amperes, and R = resistance in Ohms.

Ohms Law: Resistance

R = E/Iwhere E = voltage, I = current in

I = current in amperes, and R = resistance in Ohms.

Ohms Law: Current

I = E/R where

E = voltage, I = current in amperes, and R = resistance in Ohms.

Ohms Law: Power

 $P = E \times I$ where E = voltage,I = current in amperes, andP = power in watts.

RMS Voltage of a Sine Wave

 $V_{RMS} = V_p \times 0.707$ where

 V_{RMS} = RMS Voltage, and V_p = peak voltage.

RMS Voltage From Peak-To-Peak Voltage

 $V_{RMS} = V_{p-p} / 2 \times 0.707$ where

 V_{RMS} = RMS Voltage, and V_{p-p} = peak-to-peak voltage.

Peak-To-Peak Voltage of AC Signal

 $V_{peak} = V_{RMS} \times 2.828$ where

 V_{RMS} = RMS Voltage, and V_{peak} = peak voltage.

Power of AC Signal When Voltage and Current are in Phase

 $P(watts) = V_{RMS} \times I$ where

 V_{RMS} = RMS Voltage, I = current, and P (*watts*) = power.

Ohm's Law Extensions for Power of AC Signal

 $P (watts) = V_{RMS}^{2} \div R$ where $V_{RMS} = \text{RMS Voltage,}$ R = resistance in ohms, and $P (watts) = I_{RMS}^{2} \times R$ where $I_{RMS} = \text{RMS current,}$ R = resistance in ohms, and

P(watts) = power.

DC Circuits Equations

$P(watts) = V \times I$	
where	V = voltage,
	I = current, and
	P(watts) = power.
$P(watts) = V^2/R$	
where	V = voltage,
	R = resistance in ohms, and
	P(watts) = power.
$P(watts) = I^2 \times R$	
where	$I^2 = \text{current},$
	R = resistance in ohms, and

P(watts) = power.

RMS Voltage From Power and Resistance

 $V_{RMS} = \sqrt{P \times R}$ where

P = power in watts, R = resistance in ohms, and $V_{RMS} =$ voltage.

Power Ratios in dB

 $A (dB) = 10 x log_{10} (P_2 \div P_1)$ where $P_1 = \text{base power measurement},$ $P_2 = \text{power of interest, and}$ A (dB) = dB ratio.

Power Loss in dB

 $P_2 \div P_1 = 10^{(A(dB) \div 10)}$ where

 P_1 = base power measurement, P_2 = power of interest, and A(dB) = dB ratio.

Resistors in Series

Total Resistance = Sum of All Resistors

Resistors in Parallel

 $R_{total} = 1 / (1/R_1 + 1/R_2 + 1/R_{3...})$ where $R_1 = \text{first resistor in ohms,}$ $R_2 = \text{second resistor in ohms and so on, and}$

 R_{total} = total resistance.

Note that if all resistors are equal, simply divide the value of one resistor by the number of resistors in parallel.

Inductors in Parallel

Work the same way as resistors.

Capacitors in Parallel

Increases total capacitance.

Capacitors in Series

Decreases total capacitance.

 $C_{total} = 1 / (1/C_1 + 1/C_2 + 1/C_{3...})$ where $C_1 = \text{first capacitor in microfarads,}$ $C_2 = \text{second capacitor in microfarads and so on, and}$ $C_{total} = \text{total capacitance.}$

Note that if all capacitors are equal, simply divide the value of one capacitor by the number of capacitors in series.

Turns Ratio of Impedance Transformer

Turns Ratio = $\sqrt{Output Impedance/Input impedance}$

Secondary Voltage of Transformer

$V_{secondary} =$	$V_{primary} \times (secondary turns/primary turns)$
where	$V_{primary}$ = Primary voltage,
	<i>Primary Turns</i> = number of primary turns,
	Secondary Turns $=$ number of secondary turns, and
	$V_{secondary}$ = Secondary voltage.

Efficiency of an RF Power Amplifier

$\eta_{RF} = RF/DC$	
where	RF = RF output power,
	DC = DC input power, and
	η_{RF} = efficiency of RF power amplifier.

Frequency Deviation for 12 MHz Signal to 2 Meters

 $F_{Dev} = F_{kHz} \times (1/12)$ where

 F_{kHz} = deviation of modulated oscillator in kHz, and F_{Dev} = frequency of the frequency modulation for 2 meters.

Bandwidth of an FM Signal

$BW = 2(\Delta f + fm)$	
where	Δf = deviation frequency,
	fm = modulating frequency, and
	BW = total bandwidth (for 98% power).

Relationship of Isotropic Antenna to a Dipole

dBi = dBd + 2.15 where

dBd = dB gain for a dipole antenna, and dBi = dB gain for an isotropic antenna.

Note that *dBi* overstates the dB gain.